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FEATURES IN THE PROPAGATION OF A SUPERSONIC
FAN-SHAPED JET

V. 1. Pogorelov and G. B. Shcherbanina UDC 533.6

We present a scheme for the calculation of a fan-shaped jet formed on collision of super-
sonic oppositely directed underexpanded jets. A comparison with experiment is offered.

A supersonic fan-shaped jet is formed on collision between two identical underexpanded gas jets di-
rected at each other, and the flow which is generated is symmetrical relative to the plane of interaction,
i.e., the plane in which the jets collide. In the following we will consider only half of the flow. The quali-
tative flow pattern in such a jet can be described in the following manner (Fig. 1). As the supersonic jet
impinges on the plane of interaction, a curvilinear jump I is formed ahead of the plane (Fig. 1). If the dis-
tance between the plane of interaction and the nozzle outlet is small, the compression shock will appear di-
rectly at the boundary of the jet (point T), since the intensity of the hanging compression shock of the free
jet is small. With increasing distance separating the nozzle outlet and the plane of interaction, the intensity
of the hanging compression shock increases, thus causing it to interact with the curvilinear compression
shock. As a result we have a triple configuration of the shock waves at point T (Fig. 1b). In this case, the
reflected shock wave TB appears at the boundary. The coordinate of the point of flexure for the jet boundary
determines the exit cross section of the fan-shaped jet. Flow in such a jet is supersonic and we use the
well-studied method of characteristics to calculate such a jet [1, 2].

To determine the subsonic flow in the region be-
tween the plane of interaction and the curvilinear com-
pression shock we assume that the flow in that region is
one-dimensional. The Mach number is equal to its value
behind the compression shock, while the stagnation pres-
sure at the cross section is equal to the mean arithmetic
value between the magnitude of the pressure behind the
curvilinear shock and at the plane of interaction.

When the curvilinear compression shock reaches the
jet boundary, it is assumed that the Mach number be-
hind the shock wave is equal to unity, and that the direc-
tion of the velocity vector at the exit cross section of the
fan-shaped jet varies linearly from the value behind the
shock wave to the value at the plane of interaction (Fig.
1a).

The position of the point T at the jet boundary (Fig.
1a) is determined after the flow rate in the cylindrical
cross section TK has been equated to the flow rate of the
gas from the nozzle.

Somewhat more complicated is the calculation of the

Fig. 1. Flow field in a fan-shaped jet (My subsonic region in the second case in which the curvi-
=1.905,n=6.1,a=3°k=1.4):a)/r, linear compression shock interacts with the hanging com-
= 0.96; b) 3.25; 1) jet boundary; 2) slip line. pression shock (Fig. 1b).
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Fig. 2. Distribution of stagnation pressures behind the normal com-

pression shock on the plane of interaction: 1) theory and experiment

for I /r, = 0.96; 2) the same for 7/r, = 3.25.

Fig. 3. Location of the triple point T as a function of the distance be-
tween the plane of interaction and the nozzle outlet.

With the same hypotheses regarding the one -dimensionality of flow in the subsonic region, the posi-
tion of the triple point on the hanging shock is determined initially from the condition of the conservation
of mass for the gas in front of and behind the shock; this is then followed by the determination of the posi-
tion of the slip line from the condition that the static pressures on that line are equal. The flow in the
region of the subsonic stream between the slip lines and the plane of interaction is regarded as one-dimen-
sional, while the calculation of the supersonic region TB contained between the slip lines and the shock
wave {and then the boundary of the fan-shaped jet) is accomplished by the method of characteristics. The
position of the point T on the hanging compression shock is assumed to have been properly chosen if the
condition dF/dX = 0 has been satisfied in the cross section in which the subsonic flow attains the speed of
sound, and if the velocity vector at the slip line exhibits an inclination to the plane of interaction that is
equal to zero.

The position of the triple point satisfying this boundary condition is determined by the method of
iterations.

In addition to the existence of a subsonic region of flow, we can also include the following among the
unique features of the results from the calculation.

First of all, it is possible to have a hanging compression shock in a fan-shaped jet, which may be
reflected from the plane of interaction — depending on the initial parameters —in a regular or an irregular
manner. In the latter case, the position of the triple configuration is determined from the condition of
minimum static pressure behind the hanging shock (Fig.1). As in the case of an axisymmetric jet [3], this
method yields good agreement with experiment.

Secondly, the slip line which is formed behind the triple point T (Fig. 1b) passes rather closetothe
boundary of the fan-shaped jet. If we bear in mind that a small fraction of the flow from the nozzle (~10%)
passes through the section TK, we find that virtually all of the gas flow from the nozzle flows into the region
enclosed between the boundary of the fan-shaped jet and the slip line.

The boundary of the fan-shaped jet behind its exit section may be broken {point C in Fig. 1h), and two
hanging compression shocks may form within the fan-shaped jet.

The intensity of the first hanging compression shock initially increases, and then it diminishes. In Fig.
1b it disappears near the slip line; however, this does not indicate that it is impossible to select a regime
in which it will reach the plane of interaction and be reflected from the latter. (The reflection in this case
may be regular or irregular.) Figure 1 shows examples of calculations based on this procedure. From
these data we can judge the unique characteristics of flow in a fan-shaped jet and, in particular, we can get
some idea as to the nature of the distribution for the lines showing the constant Mach numbers.

To test the effectiveness of this method, we compared the calculation results with experimental data.
Figure 2 shows a comparison of the stagnation pressures behind the normal compression shock in the plane



of interaction with the values measured by means of a Pitot tube during the experiment. These pressures
arc referred to the stagnation pressure in the plane of interaction. The segment of the curve for which
p/ py =1 corresponds to the subsonic region of flow.

Figure 3 shows the theoretical curve and the experimental data for the position of point T as a function
of the distance between the nozzle outlet and the plane of interaction.

Having analyzed the theoretical and experimental data, we can state that the proposed calculation
scheme is quite effective and can be used in engineering practice.

NOTATION
M is the Mach number;
P is the pressure;
n=pg/pp is the ratio denoting the extent to which the jet does not meet specifications;
Iy is the pressure in the ambient medium;
k is the adiabatic exponent;
o is the half-angle of nozzle divergence;
r, is the radius of the nozzle exit section;
z is the distance between the nozzle outlet and the plane of interaction;
€p is the distance from the point of interaction between the curvilinear compression shock and the

hanging shock or the distance between the boundary of the free jet and the plane of interaction.

All of the linear dimensions have been referred to the radius of the nozzle exit section.

Subscripts

a denotes the parameters at the nozzle outlet;
0  denotes the stagnation parameters;
2  denotes the gas parameters behind the hanging compression shock of the fan~shaped jet.
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